Reactive infiltration of hydrous melt above the mantle transition zone

نویسندگان

  • Garrett M. Leahy
  • David Bercovici
چکیده

[1] Seismic studies repeatedly image a low‐velocity layer overlying the mantle transition zone in tectonic settings ranging from subduction zones to continental cratons. This layer has been hypothesized to result from the presence of a dense partial melt formed by dehydration melting as relatively wet transition zone material is advected by convection currents into the low‐water‐solubility upper mantle. Here we examine this hypothesis by considering the dynamic infiltration of a low‐viscosity reactive hydrous melt into a high‐viscosity ambient solid. The thickness of the melt layer is strongly controlled by return flow induced in the surrounding viscous solid, and in steady state a dynamic equilibrium is achieved where the melt lens is restrained from collapse by the exterior mantle. Melt layers with thicknesses in excess of 10 km develop for a wide range of mantle parameters and develop on timescales equivalent to the lifespan of an ocean basin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the dynamics of a hydrous melt layer above the transition zone

[1] The ‘‘transition zone water filter’’ (Bercovici and Karato, 2003) model relies on the presence of a dense hydrous melt above the 410-km discontinuity that is formed by dehydration melting as wet wadsleyite undergoes a phase change to low-water-solubility olivine. Recent studies suggest that, particularly in the Pacific, there is sufficient water in the transition zone for dehydration meltin...

متن کامل

Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction

The mechanisms that drive the upwelling of chemical heterogeneity from the lower to upper mantle (e.g., thermal versus compositional buoyancy) are key to our understanding of whole mantle convective processes. We address these issues through a receiver function study on new seismic data from recent deployments located on the Afar Triple Junction, a location associated with deep mantle upwelling...

متن کامل

Earth's interior. Dehydration melting at the top of the lower mantle.

The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conv...

متن کامل

Compressibility of water in magma and the prediction of density crossovers in mantle differentiation.

Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt ( partial differentialV-H2O/ partial differentialP) ...

متن کامل

Water, Melting, and the Deep Earth H2O Cycle

Hydrous melting driven by changes in H2O storage capacity may occur in a variety of settings in the mantle, including in oceanic basalt sources and in deeper regions above and below the transition zone. The 50–200 ppm H2O in the upper mantle likely derives from a blend of sources that may include residues of hydrous partial melting, either in the deep mantle and/or beneath arcs or oceanic islan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010